浙江公务员报考指导

首页 > 浙江公务员考试 > 报考指导

“容斥问题+最值”的快速求解

未知 | 2023-12-29 15:48

收藏

  一、题型特征:题干主体为容斥问题,问题中出现“最大”“最小”“至多”“至少”等字眼。

  例如:某单位有72名职工,为丰富业余生活,拟举办书法、乒乓球和围棋培训班,要求每个职工至少参加一个班。已知三个班报名人数分别为36、20、28,则同时报名三个班的职工数至多是()人。

  二、解题思路:将所求量设为未知数,根据题目要求结合容斥问题的公式进行列式,分析未知数的大小极值关系,得到结果。

  三、例题详解:

  【2024辽宁】某班在筹备联欢会时发现很多同学都会唱歌和乐器演奏,但有部分同学这2种才艺都不会。具体有4种情况:只会唱歌,只会乐器演奏,唱歌和乐器演奏都会,唱歌和乐器演奏都不会。现知会唱歌的有22人,会乐器演奏的有15人,两种都会的人数是两种都不会的5倍。这个班至多有()人。

  A.27B.30

  C.33D.36

  【答案】C

  【思路解析】设该班共有x人,唱歌和乐器演奏都不会的有y人,则两种都会的有5y人,根据二集合容斥公式可得:x-y=22+15-5y,化简得:x=37-4y。要使x最大,则y应最小,当y=1时,x=33,故这个班至多有33人。因此,选择C选项。

  【2024甘肃】某单位工会会员60人,现在组织会员报名参加兴趣活动小组,其中报名徒步组的有40人,羽毛球组的有38人,乒乓球组的有31人,这三项活动都报名的有18人,问这个单位工会会员中最多有多少人三个小组都没有报名?

  A.14B.15

  C.16D.18

  【答案】A

  【思路解析】设报名两项的人数为x,三项都未报名参赛的人数为y,根据三集合非标准型公式可得:40+38+31-x-2×18=60-y,化简得y=x-13。要让三项都未报名的y最多,则让x尽量多。考虑让报名两项的人数x尽量多,则除了报名三项之外的人,剩余尽量报名两项,此时x最多为(40+38+31-3×18)÷2=27.5(人),向下取整为27人,即x最多为27,故y最多为x-13=27-13=14(人)。因此,选择A选项。

 

  对于这种类型的题目,重点就是最后分析所求量的大小关系,那么大家在进行分析的时候,要注意好题目的限定条件,对应确定其中的范围,最后计算求解。相信大家用好这个方法,对于容斥问题+最值问题的计算应该会非常快速。

 

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有